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Survival prediction in intensive-care units based on 
aggregation of long-term disease history and acute 
physiology: a retrospective study of the Danish National 
Patient Registry and electronic patient records
Annelaura B Nielsen, Hans-Christian Thorsen-Meyer, Kirstine Belling, Anna P Nielsen, Cecilia E Thomas, Piotr J Chmura, Mette Lademann, 
Pope L Moseley, Marc Heimann, Lars Dybdahl, Lasse Spangsege, Patrick Hulsen, Anders Perner, Søren Brunak

Summary
Background Intensive-care units (ICUs) treat the most critically ill patients, which is complicated by the heterogeneity 
of the diseases that they encounter. Severity scores based mainly on acute physiology measures collected at ICU 
admission are used to predict mortality, but are non-specific, and predictions for individual patients can be inaccurate. 
We investigated whether inclusion of long-term disease history before ICU admission improves mortality predictions.

Methods Registry data for long-term disease histories for more than 230 000 Danish ICU patients were used in a 
neural network to develop an ICU mortality prediction model. Long-term disease histories and acute physiology 
measures were aggregated to predict mortality risk for patients for whom both registry and ICU electronic patient 
record data were available. We compared mortality predictions with admission scores on the Simplified Acute 
Physiology Score (SAPS) II, the Acute Physiologic Assessment and Chronic Health Evaluation (APACHE) II, and the 
best available multimorbidity score, the Multimorbidity Index. An external validation set from an additional hospital 
was acquired after model construction to confirm the validity of our model. During initial model development data 
were split into a training set (85%) and an independent test set (15%), and a five-fold cross-validation was done during 
training to avoid overfitting. Neural networks were trained for datasets with disease history of 1 month, 3 months, 
6 months, 1 year, 2⋅5 years, 5 years, 7⋅5 years, 10 years, and 23 years before ICU admission.

Findings Mortality predictions with a model based solely on disease history outperformed the Multimorbidity Index 
(Matthews correlation coefficient 0⋅265 vs 0⋅065), and performed similarly to SAPS II and APACHE II (Matthews 
correlation coefficient with disease history, age, and sex 0·326 vs 0·347 and 0·300 for SAPS II and APACHE II, 
respectively). Diagnoses up to 10 years before ICU admission affected current mortality prediction. Aggregation of 
previous disease history and acute physiology measures in a neural network yielded the most precise predictions of 
in-hospital mortality (Matthews correlation coefficient 0⋅391 for in-hospital mortality compared with 0⋅347 with 
SAPS II and 0⋅300 with APACHE II). These results for the aggregated model were validated in an external 
independent dataset of 1528 patients (Matthews correlation coefficient for prediction of in-hospital mortality 0⋅341).

Interpretation Longitudinal disease-spectrum-wide data available before ICU admission are useful for mortality 
prediction. Disease history can be used to differentiate mortality risk between patients with similar vital signs with 
more precision than SAPS II and APACHE II scores. Machine learning models can be deconvoluted to generate 
novel understandings of how ICU patient features from long-term and short-term events interact with each other. 
Explainable machine learning models are key in clinical settings, and our results emphasise how to progress towards 
the transformation of advanced models into actionable, transparent, and trustworthy clinical tools.
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Introduction
Intensive-care units (ICUs) handle patients from all 
medical and surgical specialties. Therefore, their 
populations are highly heterogeneous, and consist of 
mainly elderly patients who often have a long history of 
disease. Prediction of prognosis to inform decision 
making in the ICU is difficult because of the severity of 
patients’ current illness and their disease history.1

Mortality risk estimates based on acute physiology 
scores—such as the Simplified Acute Physiology Score 
(SAPS) and the Acute Physiologic Assessment and 
Chronic Health Evaluation (APACHE)—are sometimes 
used in clinical practice to assess disease severity.2,3 They 
are based on logistic regression of specific markers of 
patient physiology that are recorded during the first 
hours after ICU admission. In the past 10 years, advanced 
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modelling and machine learning techniques have shown 
promising results in improving prediction of ICU 
prognosis based on acute physiology.4

The extent to which disease events before ICU admission 
affect prognosis has been debated.1,5 An increasing number 
of chronic comorbidity categories have been included in 
SAPS and APACHE as they have been updated over the 
years (from three in SAPS II to seven in SAPS III, and 
from five in APACHE II to seven in APACHE IV), yet still 
only a small number of comorbidities are included. The 
predictive value of comorbidity categories as defined by 
Charlson and colleagues6 (ten diagnoses) and Elixhauser 
and colleagues7 (30 diagnoses) has been studied repeatedly 
in relation to prediction of mortality in the ICU. In several 
studies,8–10 Charlson comorbidity categories had better 
predictive power than the APACHE II comorbidity 
categories and similar predictive power to the SAPS II, 
SAPS III, and APACHE II scores.8–10 In another study,11 
comorbidity categories did not contribute significantly to 
the discrimination of the APACHE II score, and 
replacement of APACHE II comorbidities with Charlson 
or Elixhauser comorbidities did not improve discriminatory 
ability. Two studies12,13 done in the same homogeneous 

population of predominantly male, American, military 
veteran, medical ICU patients showed that the Elixhauser 
comorbidity categories outperformed APACHE II 
categories and had better ability to predict ICU mortality 
because of the inclusion of more than 5000 unique 
diagnosis codes. Several disease-spectrum-wide studies14–16 
have shown that factors such as total burden of disease, 
time between diagnoses, and order of diagnoses affect the 
risk of future complications. However, because long-term 
disease histories are often not systematically recorded 
everywhere, integration of such information into clinical 
decision support is still largely unexplored.

In this study, we used neural networks to combine long-
term disease histories before ICU admission for more than 
230 000 patients from a population-wide disease registry 
with acute physiology measures obtained from electronic 
patient records (EPRs) during the first 24 h of the ICU stay 
to predict in-hospital, 30-day, and 90-day mortality.

Methods
Data sources
In this study, we used registry data for long-term disease 
history and ICU admission, and acute ICU clinical data 

Research in context

Evidence before this study
Intensive-care units (ICUs) treat highly heterogeneous patients 
at high risk of mortality. The heterogeneity of the patient 
population complicates treatment. Linear models that predict 
patient outcome on the basis of acute physiology measurements 
are used in clinical practice to support decision making. We based 
our search for ICU mortality prediction models on a 
comprehensive 2016 review by Johnson and colleagues. 
We searched Google Scholar for studies citing the Medical 
Information Mart for Intensive Care database, the largest online 
ICU database, that were published in English between 
Dec 1, 2011 (the date of the first Medical Information Mart for 
Intensive Care publication), and Aug 1, 2018. In many studies 
published in the past 10 years, advanced modelling and machine 
learning techniques, some of which included text-mined features 
from electronic patient records, have shown promise for 
improving prediction of prognosis in the ICU based on acute 
physiology. However, we identified no studies or available 
severity scoring systems (eg, the Simplified Acute Physiology 
Score, the Acute Physiologic Assessment and Chronic Health 
Evaluation) in which long-term disease history before ICU 
admission was used to predict ICU mortality, even though ICU 
patients often have long disease histories. In the past 5 years, we 
have done several disease-spectrum-wide studies showing that 
factors such as total disease burden, time between diagnoses, 
and the sequential order of diagnoses affect the risk of future 
complications. Therefore, the aggregation of long-term disease 
history and acute physiology measures in a machine learning 
model could potentially provide a more accurate outcome 
prediction model to support decision making in the ICU.

Added value of this study
Long-term disease history is seldom systematically exploited 
in clinical settings, and is rarely used to inform clinical 
decision making. To our knowledge, our study is the first in 
which machine learning was used to predict mortality for ICU 
patients on the basis of long-term disease history. We used 
disease histories from more than 230 000 ICU patients with 
up to 23 years of available data before ICU admission stored 
in a national disease registry. These data were aggregated 
with acute physiology measurements obtained from 
electronic patient records. Models based on previous disease 
history could predict mortality as well as the clinical severity 
scores in use. Aggregation of long-term disease history and 
acute physiology measures in a neural network showed that 
health-related events from different timepoints in a patient’s 
life interact in a non-linear manner, and that taking account 
of these interactions between long-term and short-term 
disease history gave more precise prognostic estimates than 
either long-term disease history or short-term disease history 
individually.

Implications of all the available evidence
Our study shows the importance of previous disease history 
in predictions of mortality in ICU patients and thus, 
the importance of these data in clinical decision making. 
The predictive value of long-term disease history was stable 
over time compared with that of physiology measures, 
is independent of ICU care, and can be made available at 
admission to the ICU.
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from EPRs, to create a machine learning model to predict 
30-day and 90-day mortality. Long-term disease histories 
for all medical and surgical patients admitted to an ICU in 
Denmark between Jan 1, 2004 (when systematic 
registration of ICU admissions began), and July 1, 2016, 
were extracted from the Danish National Patient Registry.17 
The Danish National Patient Registry contains disease 
histories coded according to the 10th revision of the 
International Classification of Diseases (ICD-10) dating 
back to the introduction of ICD-10 terminology in 
Denmark in 1994. ICD-10 terminology is organised into 
levels: 21 chapters, 227 diagnosis blocks, and 1698 level-3 
diagnoses with more detailed descriptions. The numbers 
of diagnosis blocks and level-3 diagnoses can vary slightly 
between countries.

Registry data were excluded if they related to patients 
younger than 18 years or if outcome information was 
unavailable because of migration, change of personal 
identification number, or other similar reasons.

Additionally, raw data for acute ICU measures were 
extracted from EPRs covering individual medical and 
surgical patients at three ICUs in hospitals in the Capital 
Region of Denmark, from which harmonised, high-
frequency data were available. Data were extracted from 
the Daintel Critical Information System, a specialised, 
commercial data collection and EPR system for ICUs.

After we developed our model, we obtained an external 
validation dataset from a fourth hospital in the Capital 
Region of Denmark between June 7, 2012, and 
May 20, 2016. These data were processed in the same way 
as the EPR data included in our model. The study was 
approved by the Danish Patient Safety Authority 
(3-3013-1723), the Danish Data Protection Agency (DT 
SUND 2016-48 and 2017-57), and the Danish Health Data 
Authority (FSEID 00003724).

Procedures
Dates of admission to, and discharge from, hospital 
before and after ICU admission were also extracted from 
the registry and used to calculate time from diagnosis to 
admission, length of hospital stay before ICU admission, 
and time to outcome (ie, survivor or non-survivor). 
Patients with multiple ICU admissions were included in 
the study (all admissions were used in the model). We 
retrieved information about date of birth, date of death, 
and sex from the Danish Central Person Registry. On the 
basis of this information, we calculated in-hospital 
mortality (which was defined as death on any ward 
during hospital admission), 30-day mortality (death 
within 30 days of ICU admission) and 90-day mortality 
(death within 90 days of ICU admission).  The in-hospital 
mortality was calculated based on how many patients die 
while still at the hospital, which could be any number of 
days after admission. The 30-day mortality was measured 
30 days after ICU admission, irrespective of whether 
patients were inpatients or outpatients. The acute ICU 
measures from EPR data included in this study were 

those from the original SAPS II and APACHE II scores, 
which were in clinical use during the study period.2,3 
SAPS II measures include age, type of admission, three 
chronic disease variables (metastatic cancer, 
haematological malignancy, and AIDS), and 
12 physiological variables all recorded within the first 
24 h of ICU admission (ie, heart rate, temperature, 
systolic blood pressure, partial pressure of arterial oxygen 
in inspired air, fractional concentration of oxygen in 
inspired air, urine output, white blood cell count, 
bilirubin concentration, and serum urea, bicarbonate, 
sodium, and potassium concentrations). SAPS II scoring 
is based on physiological extremes, and therefore both 
minimum and maximum values for physiological 
variables were included in our model as variables. These 
categorical physiological variables were represented as 
individual binary features, resulting in 27 variables in our 
model. APACHE II also includes physiological, chronic 
disease, and admission data. We created maximum and 
minimum features for the additional physiological 
variables of APACHE II that are not included in SAPS II, 
and represented additional comorbidity categories in 
binary form. 44 variables from the two scores were 
included in our model. We applied the same exclusion 
criteria used for the registry data to EPR data. ICU stays 
shorter than 24 h were also excluded, as were patients 
with missing outcome data at 90 days. We set a cutoff of 
one missing value per admission.

For all EPR variables, possible physiological ranges 
were defined from clinical experience (appendix) and 
values outside these ranges were defined as missing. 
Missing values were imputed with the median and mode 
from the feature distributions of continuous and binary 
features, respectively. We tried other methods, including 
multiple imputation, but use of the median and mode 
was simpler and was sufficient for this work in which the 
amount of missing data was very low.

We used a combination of Tukey’s and Winsor’s 
methods18,19 to normalise data for the continuous variables. 
Values outside the upper and lower bounds of 1⋅5 times 
the IQR were set to the upper and lower limits of the range 
(appendix) to reduce the effects of outliers and produce a 
normal distribution while conserving the topology of the 
data. Finally, continuous variables were scaled to a mean 
of 0 with an SD of 1. The external validation dataset was 
imputed and normalised with mean and SD as described 
for the dataset used to develop the model. For both 
imputation and normalisation, the mean and SD values 
found for the development dataset were used. All patients 
were assigned a specific letter (A, B, or C), which 
represented the hospital that they had been admitted to. 
This information was presented to the model by means of 
one-hot encoding with three input units. For the data from 
the fourth hospital (the external test set), this information 
was omitted. Our external predictive performance estimate 
was thus fully independent of information about the 
group of hospitals represented in the training data.

See Online for appendix
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Model development
Neural network models were trained on data that met 
inclusion criteria from both sources (ie, registry data 
and  EPR data) both separately (registry data) and in 
combination with a cross-validation scheme (for data 
present in both registry and EPRs that met all inclusion 
criteria) in addition to an independent test set (figure 1). 
Registry data for ICU admissions were randomly split 
into a training set (85%) and an independent test 
set (15%). To avoid overfitting, five-fold cross-validation 
was done during training. Training data were thus 
divided into training (80%) and validation (20%) sets for 
each cross-validation fold. With these percentages (by 
contrast with a ten-fold cross-validation, for example) the 
independent test and validation sets were reasonably 
large, which reduced the risk that they might not be 
representative of the underlying population—a scenario 
that could have resulted in overestimation of the 
predictive performance.20 A feed-forward neural network 
with one hidden layer was trained by backpropagation on 
the training set for 3000 epochs. In each epoch, the 
performance was assessed against the validation set, and 
the optimal model for each cross-validation fold was 
selected from the epoch with the highest performance. 
We used balanced training to ensure optimal prediction 
of both classes. Balancing was done in each epoch by 
randomly picking an equal number of patients from the 
majority (survivors) and minority (non-survivors) classes.

To establish how length of previous disease history 
affects ICU mortality, neural networks were trained for 
datasets with disease history of 1 month, 3 months, 
6 months, 1 year, 2⋅5 years, 5 years, 7⋅5 years, 10 years, 
and 23 years before ICU admission. To establish how 
detailed the data needed to be represented, additional 
neural networks were trained: 5 years and 10 years 
accumulated or year-wise. For example, in the accumulated 
representation, 5 years of chapter-level diagnoses resulted 
in 21 variables (one for each chapter), whereas the year-
wise representation of five years of ICD-10 chapters 
resulted in 105 variables. To establish the effect of cohort 
size, neural networks were trained for cohorts of 250, 500, 
1000, 2500, 5000, 10 000, 20 000, 40 000, 80 000, 160 000, 
and 230 000. All models were trained with chapter-level 
(n=21) and block-level (n=227) ICD-10 diagnosis codes and 
with 90-day mortality as the outcome. The optimisation 
function (RMSprop), activation function (sigmoid), 
number of batches (one), and learning rate (0⋅001) were 
kept constant across models. The number of hidden 
neurons was optimised (0, 25, 100, 250, 500, 750, and 
1000 units). We also ran grid searches on optimisation 
function, activation function, learning rates, number of 
batches, and different drop-out models. However, we 
concluded that the number of hidden neurons was most 
important in relation to predictive performance. We did 
not include balanced bootstrapping because of the 
additional computational time that this process would 
necessitate. A single-layer network of the type that we 

used can approximate any continuous function from a 
compact interval of the real numbers, and is therefore not 
limited in terms of mapping input vectors to mortality 
labels.21 The choice of a simple network structure also 
makes it easier to explain how the model works to users.

The subset of patients for whom EPR data were 
available was also randomly split into a training set (85%) 
and an independent test set (15%). Training was done by 
balanced training with five-fold cross-validation. A 
one-hidden-layer neural network was trained on the 
training set for 5000 epochs. For each dataset, the 
mortality modelling was based on five configurations: 
“history before admission” was based on 10 years of 
disease history before ICU admission, age, and sex; 
“history at admission” was based on data available at ICU 
admission, including 10 years of disease history, length of 
hospitalisation before ICU admission, transfer category 
(ie, medical, scheduled surgery, or unscheduled surgery), 
and hospital code; “SAPS II” was based on the original 
SAPS II score; “APACHE II” was based on the original 
APACHE II score; and “aggregated history” was based on 
the features from SAPS II, APACHE II, and “history at 
admission” (appendix). All models were trained for in-
hospital, 30-day, and 90-day mortality.

Optimisation of hyperparameters was done for 
0 (logistic regression), 3, 5, 10, 25, 50, 100, 200, and 
300 hidden neurons. Optimisation function (RMSprop), 
activation function (sigmoid), number of batches (one) 
and learning rate (0⋅001) were kept constant across EPR 
models. The optimal models identified in each cross-
validation fold and for each dataset and outcome were 
used to predict outcome for admissions in the 
independent test set. The five predictions, one for each 
cross-validation fold, were gathered in an ensemble (by 
mean) into the final prediction. The Python code for 
training the neural network for “aggregated history” is 
available in the appendix.

Model interpretation
For the best-performing model (trained on aggregated 
data), we analysed feature importance and feature 
interactions. We interpreted overall feature importance 
with the test set. Importance was assessed by estimating 
the effect of feature absence—ie, in an iterative process, 
each feature was set to 0 (mean or mode) and new 
predictions were computed. For each patient, the effect 
of feature absence was calculated by obtaining the 
distance to the original prediction. A negative distance 
was obtained if the new predicted value was higher 
(ie, towards non-survival) than the original prediction, 
suggesting that the patient in question had a value that 
lowered mortality risk compared with the mean risk for 
the population. A mean of absolute distances across 
patients was used to generate a ranked list of variables 
according to effect on outcome predictions across all 
patients. Estimation of variables’ importance with a 
more sophisticated approach (ie, local interpretable 
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model-agnostic explanations) produced very similar 
results.22

Individual variable interactions were calculated for the 
top-ranking variables. Again, the variable in question 
was set to 0 for the entire dataset, and each of the 
remaining features were iteratively set to 0 to estimate 
the effect of both features being absent at the same time. 
The effect of the interaction was compared with the 
additive effect of the variables individually. The differ
ence between the sum of the effects when removing the 
two features individually and the effect of removing 
the two features simultaneously was calculated for each 

patient and the mean of the absolute distances was used 
to find the top interacting features. Because many of the 
binary variables were present in only some patients, 
importance was re-estimated by correcting for the 
number of patients in whom the variable was present. 
Some variables were present in less than 1% of patients 
(n=15) in the independent test set and were not included 
in the analysis. Analyses were repeated for each model 
in the ensemble (each cross-validation fold) and the 
effect was averaged per patient before calculation of 
the overall importance and strength of the feature 
interaction.

Figure 1: Study overview of data and time-course aggregation
Previous disease history and acute physiology data from the first 24 h of ICU admission were used separately or in combination as inputs to a neural network 
algorithm to predict in-hospital, 30-day, and 90-day mortality. Disease history data were retrieved from a population-wide registry that included up to 23 years of 
disease history before ICU admission. Laboratory values, vital signs, and admission information for the first 24 h of ICU admission were retrieved from electronic 
patient records from hospitals in the Danish Capital Region. ICU=intensive-care unit. ICD-10=10th revision of the International Classification of Diseases. 
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Model performance was assessed with the Matthews 
correlation coefficient, the area under the receiver 
operating characteristics (AUROC) curve, and positive 
predictive value. The Matthews correlation coefficient—
which is a quality measure for multiclass classifiers that 
takes the entire confusion matrix into account and, 
thus,  fairly summarises the prediction on unbalanced 
datasets—was calculated as

in which TP=true positives, TN=true negatives, FP=false 
positives, and FN=false negatives. AUROC was obtained 
by plotting the rate of correctly classified positives among 
all positive predictions (ie, the true positive rate) as a 
function of incorrect positives among all negatives 
(ie, the false positive rate), at varying thresholds. Positive 
predictive value, which is also known as precision and is 
used in clinical practice to assess the performance of 
alarm systems (for which a low ratio of false alarms is 
essential), was calculated as

The positive predictive value decreases with increasing 
number of false positive results. In this study, “negatives” 
refers to survivors, and “positives” to non-survivors. All 
analyses were done in Python (version 2.7), in which 
neural networks were trained with Keras. Plots were 
generated in R (version 3.4.0).

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had full 
access to all the data in the study and had final 
responsibility for the decision to submit for publication. 

Results
10 years of disease history before ICU admission was 
available for 231 633 unique patients with 275 143 ICU 
admissions in Denmark. At a cutoff allowing only one 
missing value per ICU admission, only 421 (0·1%) of all 
values were missing. The final dataset included 
8817 individual patients with 10 368 ICU admissions, 
which were subsequently split into training (n=8812) and 
test sets (n=1556; figure 2), and had both long-term 
disease history and ICU data from EPRs. 10 223 (98⋅6%) 
of the 10 368 admissions did not have any missing data. 
3462 (33·4%) of this cohort died in hospital, 2729 (26·3%) 
died within 30 days of ICU admission, and 3671 (35·4%) 
died within 90 days of ICU admission (table 1). 

Model performance, as indicated by the Matthews 
correlation coefficient, increased as additional years were 
included in the model, with saturation at 5 years and 
10 years of disease history for the chapter and block level 
diagnoses, respectively (appendix). At both the chapter 
level and block level of the ICD-10, representation of 
the data in a year-wise manner resulted in improved 
mortality prediction compared with accumulated data 
representation (appendix). Furthermore, increasingly large 
cohorts were needed to obtain optimal performance when 
data were represented with increasing granularity—ie, 
block-level diagnoses and year-wise representation 
(appendix). The addition of further years to disease history 
or inclusion of level-3 diagnoses (ie, diagnosis codes) did 
not improve the model’s performance (data not shown).

The Multimorbidity Index was reported to significantly 
outperform (ie, to have a greater AUROC than) other 
multimorbidity scores in the prediction of ICU mortality 
compared with other multimorbidity scores.13 We also 
applied the Multimorbidity Index method to our long-
term disease history data to predict mortality risk. 
10 years of previous history was used with year-wise 
representation. Our neural-network approach performed 
better than the Multimorbidity Index in the independent 
test set for all performance measures (Matthews 
correlation coefficient 0⋅265 vs 0⋅065; AUROC 0⋅713 vs 
0·554; positive predictive value 0⋅388 vs 0⋅257; appendix).

After first training models solely on previous disease 
history, we studied the predictive effect of previous 

Figure 2: Selection of electronic patient records for admissions to 
intensive-care units in the training and test cohort (A) and in the external 
validation cohort (B)

1528 with ≤1 missing values included in external validation cohort

1121 records excluded
 494 did not have Danish National Patient Registry data
 23 did not have available outcome data at 90 days
 61 aged <18 years
 522 admissions <24 h
 21 >1 missing value at admission to intensive-care unit

2649 electronic patient records available

A

B

19 543 electronic patient records available

10 368 with ≤1 missing values

8812 included in training cohort 1556 included in test cohort 

9175 records excluded
 1168 did not have Danish National Patient Registry data
 1946 did not have available outcome data at 90 days
 1215 aged <18 years
 4679 admissions <24 h
 167 >1 missing value at admission to intensive-care unit

Matthews correlation coefficient =

(TP × TN) – (FP × FN)

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Positive predictive value =
TP

TP + FP
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disease history and acute physiology measures separately 
and in combination (appendix). Remarkably, the network 
that included only age, sex and 10-year disease history 
before ICU admission as model inputs (ie, the history 
before admission configuration) performed similarly 
(Matthews correlation coefficient 0·326; AUROC 0·731) 
to SAPS II (0·325; 0·735) and APACHE II (0·285; 0·715; 
figure 3, table 2). The aggregated history model 
outperformed all other models as measured by the 
Matthews correlation coefficent (0·410; figure 3). AUROC 
and positive predictive value were also improved in the 
aggregated history model (table 2).

Data from the external validation set were obtained 
between June 7, 2012, and May 20, 2016, and comprised 
1384 medical and surgical patients with 1528 ICU 
admissions (figure 2B). The best-performing model, the 
aggregated history model, was validated in the external 
dataset. For 90-day mortality, the Matthews correlation 
coefficient was 0·382, the AUROC was 0·746, and the 
positive predictive value was 0·576 (table 2). 

To assess if our initial predictions were reliable as a 
reference at later stages during ICU stays, we investigated 
how accurate our initial predictions were for patients 
remaining in the ICU. A substantial proportion of 
patients was discharged within the first 10 days of ICU 
admission (appendix). Importantly, the performance of 
the models including previous disease history and 
admission information did not deteriorate during the 
entire admission irrespective of length of stay in the 
ICU, whereas predictions based on data collected within 
the first 24 h of ICU admission become less reliable as 
time passed (appendix). For the model based on history 
at admission, the Matthews correlation coefficient was 
0·357 after 24 h and 0·337 after 14 days, whereas the 
Matthews correlation coefficient for the aggregated 
history model was 0·410 after 24 h and 0·242 at 14 days.

We next interpreted the machine learning model.22,23 
The ten most important variables contributing to the 
performance of the aggregated history model with 
aggregated time-course are listed in figure 4A. Low age 
decreases mortality risk whereas high age increases 
mortality risk (figure 4A). The only binary variables 
among the top ten were hospital  A and mechanical 
ventilation (figure 4A).

 For example, a previous history of diagnoses related 
to reproduction (ICD-10 diagnoses Z30–39) generally 
decreased mortality risk, and this effect was stronger 
for older patients than for younger patients (figure 4B). 
We also investigated these diagnoses individually: low-
risk women had previous diagnoses related to 
pregnancy and deliveries (data not shown). Figure 4C 
shows the interaction of length of stay before ICU 
admission and the history of haematological 
malignancy. Mortality risk increases with increasing 
length of hospital stay before ICU admission, and this 
effect is enhanced for patients with a history of 
haematological malignancies (figure 4C). Yet, in the 

Model construction 
data (training cohort; 
n=8812)

Internal validation 
data (test cohort; 
n=1556)

External validation 
data (n=1528)

Sex

Female 3413 (38·7%) 576 (37·0%) 668 (43·7%)

Male 5399 (61·3%) 980 (63·0%) 860 (56·3%)

Hospital stay before 
admission to ICU, days

2 (0–10) 2 (0–9) 2 (0–7)

Age, years 64 (52–73) 64 (53–73) 68 (60–76)

Arterial pH

Minimum 7·31 (7·22–7·38) 7·31 (7·22–7·38) 7·29 (7·20–7·37)

Maximum 7·43 (7·38–7·47) 7·43 (7·38–7·47) 7·42 (7·37–7·47)

Bilirubin, μmol/L 10 (6–20) 10 (6–19) 13 (9–21)

FiO2, % 50 (40–70) 50 (40–70) 45 (30–69)

Glasgow Coma Scale score 15 (12–15) 15 (11–15) 13 (7–15)

Heart rate, beats per min

Minimum 75 (64–88) 75 (63–86) 76 (65–88)

Maximum 115 (100–131) 114 (100–130) 120 (104–135)

Haematocrit, % of blood volume

Minimum 28·0 (25·0–32·2) 28·0 (25·0–32·0) 28·4 (25·0–33·6)

Maximum 34·0 (30·0–38·0) 33·0 (30·0–38·0) 32·2 (28·0–37·4)

Mean arterial pressure, mm Hg

Minimum 57 (50–65) 57 (50–65) 54 (47–61)

Maximum 107 (90–135) 110 (90–141) 125 (101–188)

PaCO2, kPa 5·6 (4·9–6·6) 5·6 (4·9–6·5) 5·2 (4·4–6·5)

PaO2, kPa 10·5 (9·0–13·1) 10·3 (9·0–13·1) 10·0 (8·7–12·8)

Respiratory rate, breaths per min

Minimum 13 (10–16) 13 (10–16) 12 (9–15)

Maximum 27 (21–35) 26 (20–33) 32 (27–38)

Serum bicarbonate, mmol/L 22·0 (18·6–25·0) 22·0 (18·5–25·0) 20·4 (16·8–24·0)

Serum creatinine, mmol/L

Minimum 85 (60–140) 88 (62–144) 99 (65–178)

Maximum 100 (67–174) 103 (69–180) 116 (72–216)

Serum potassium, mmol/L

Minimum 3·5 (3·2–3·8) 3·5 (3·3–3·8) 3·6 (3·3–3·9)

Maximum 4·4 (4·1–4·8) 4·4 (4·1–4·8) 4·4 (4·1–4·9)

Serum sodium, mmol/L

Minimum 136 (133–140) 136 (133–140) 136 (132–139)

Maximum 140 (137–144) 140 (137–144) 140 (137–144)

Serum urea, mmol/L 9·0 (5·6–15·1) 9·0 (5·8–15·0) 10·0 (6·0–16·0)

Systolic blood pressure, mm Hg

Minimum 85 (71–98) 84 (71–98) 79 (67–93)

Maximum 150 (130–170) 150 (130–170) 153 (135–173)

Temperature, °C

Minimum 36·5 (35·6–37·0) 36·5 (35·6–37·0) 36·5 (35·7–37·0)

Maximum 37·7 (37·0–38·4) 37·7 (37·0–38·4) 37·4 (36·8–38·1)

Urine output, mL 2000 (1119–2800) 2000 (1015–2800) 1500 (800–2270)

White blood cell count, 10⁹ per L

Minimum 10·0 (6·8–14·0) 9·9 (6·5–14·0) 10·6 (7·0–15·0)

Maximum 13·0 (9·0–18·4) 13·0 (9·1–18·0) 14·0 (9·5–20·0)

Acute renal failure 1227 (13·9%) 227 (14·6%) 210 (13·7%)

AIDS 38 (0·4%) 5 (0·3%) 1 (0·1%)

Cardiac failure 752 (8·5%) 155 (10·0%) 132 (8·6%)

(Table 1 continues on next page)
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case of increased mortality risk caused by both a long 
length of stay and haematological malignancy, the 
effects of the two variables are not additive; instead a 
plateau is reached for patients with long hospital stays 
(>18 days) before ICU admission.

The two largest subgroups of ICU patients were 
patients with respiratory insufficiency, who accounted 
for 618 (39·7%) of 1556 test set patients, and patients 
with sepsis, who accounted for 224 (14·4%) of test set 
patients. Models based mainly on acute measures 
(eg, SAPS II, APACHE II) generally performed worse in 
patients with sepsis than in the overall cohort, whereas 
the aggregated model and the models based on long-
term disease history performed well in patients with 
sepsis (figure 5A). Furthermore, long-term disease 
history seemed to contribute more than acute measures 
to models for estimation of prognosis in patients with 
sepsis (figure 5A). Performance of all models in the 
respiratory insufficiency subgroup was similar to that in 
the full ICU population (figure 5B).

 

Discussion
In this retrospective study of registry data for all Danish 
ICU admissions between 2004 and 2016 and EPR data 
for more than 10 000 patients, prediction models for 
mortality risk in ICU patients based solely on previous 
disease history performed as well as mortality scores in 
clinical use (ie, SAPS II and APACHE II). Furthermore, 
models based on aggregation of long-term disease 
history and acute physiology measures in a neural 
network showed that health-related events from different 

timepoints in a patient’s life interact, and that exploitation 
of these interactions between long-term and short-term 
disease history gives more precise prognostic estimates 
than either short-term or long-term history individually.

On the basis of a review of mortality prediction models 
that included data from the critical care database Medical 
Information Mart for Intensive Care, we identified studies 
that applied various machine learning methods and that 
had outcome measures and inclusion criteria similar to 
those used in our study.23–30 Sufficient information to 
calculate the Matthews correlation coefficient, AUROC, 
and positive predictive value was available in only 
three studies.25,27,28 Comparison of prediction performance 
showed that other models had higher AUROC but worse 
Matthews correlation coefficients and positive predictive 
values than our model (appendix). The Matthews 
correlation coefficient and positive predictive value are 
useful performance measures for imbalanced datasets, 
because they show how well models perform in the 
two balanced classes and the minority class, respectively. 
Thus, our model is associated with fewer false predictions 
of death than those in previous studies.

The value of longitudinal historical health data in 
predictions of future health has been questioned.31 In our 
study, the accuracy of mortality risk prediction was 
improved by the inclusion of increasingly long disease 
histories despite changes in clinical practice over the 
years. Furthermore, our neural network predicted ICU 
prognosis more accurately than the best-performing 
multimorbidity score reported so far, the Multimorbidity 
Index.13 In the study of the Multimorbidity Index, 13 Min 
and colleagues argued that diagnoses should not be 
assumed to independently affect the odds of mortality. 
Our findings support this position. We did not have long-
term data for medications prescribed, adherence to 
medication, or polypharmacy. Such data could be relevant 
to our model.

We could not study model interactions of long-term 
disease history and 24 h ICU measures in a year-wise 
manner because of the small size of the ICU cohort with 
both registry and EPR data available (n=10 368). Yet in the 
larger, population-wide ICU cohort (n=275 143 ICU 
admissions), in the model based on previous disease 
history alone, time-wise separation of an individual’s 
diagnoses improves mortality prediction. Furthermore, 
mortality risk is affected not only by the diagnoses but 
also the temporal order of these diagnoses (appendix). A 
larger cohort with fine-grained EPR data would probably 
improve model performance. Recent disease history 
(ie, disease history immediately before the hospital 
admission) affects a patient’s risk of ICU mortality more 
than diseases diagnosed 5–10 years ago. It seems intuitive 
that diseases that are diagnosed close to ICU admission 
affect mortality risk more than diseases diagnosed 
several years previously, although the inclusion of these 
older diagnoses still further improves mortality 
prediction models.

Model construction 
data (training set; 
n=8812)

Internal validation 
data (test set; 
n=1556)

External validation 
data (n=1528)

(Continued from previous page)

Immunocompromised 1138 (12·9%) 200 (12·9%) 166 (10·9%)

Liver failure 575 (6·5%) 91 (5·8%) 67 (4·4%)

Malignant haematology 477 (5·4%) 86 (5·5%) 78 (5·1%)

Mechanical ventilation 5450 (61·8%) 963 (61·9%) 774 (50·7%)

Metastatic cancer 368 (4·2%) 65 (4·2%) 52 (3·4%)

Renal failure 550 (6·2%) 123 (7·9%) 98 (6·4%)

Respiratory failure 1277 (14·5%) 233 (15·0%) 228 (14·9%)

Transfer type

Medical 4615 (52·4%) 817 (52·5%) 1076 (70·4%)

Scheduled surgery 415 (4·7%) 85 (5·5%) 46 (3·0%)

Unscheduled surgery 3782 (42·9%) 654 (42·0%) 406 (26·6%)

Mortality

In-hospital mortality 2944 (33·4%) 518 (33·3%) 569 (37·2%)

30-day mortality 2315 (26·3%) 414 (26·6%) 525 (34·4%)

90-day mortality 3121 (35·4%) 550 (35·3%) 638 (41·8%)

Data are n (%) or median (IQR). ICU=intensive-care unit. FiO2=fractional concentration of oxygen in inspired air. 
PaCO2=partial pressure of carbon dioxide in inspired air. PaO2=partial pressure of arterial oxygen in inspired air.

Table 1: Characteristics of ICU admissions used to develop the model and in the external validation data set
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A general limitation of our study was that the 
reliability of the predictive value of the aggregated 
history models deteriorates over time. Thus, the 
physiology measures included in the model should be 
updated dynamically, and prognosis reassessed on a 
day-by-day basis. However, one of the key clinical 
findings of our study was that the mortality predictions 
with models based on previous disease history alone 
remained stable and reliable throughout an ICU 
admission, whereas the accuracy of predictions with 
models based on ICU data deteriorated more rapidly 
over time (appendix). Furthermore, mortality prediction 
models based on previous disease history were 
independent of the care provided during the ICU 
admission and thus are an unbiased severity measure. 
The model can be used in the same way as severity 
scores like SAPS II. The addition of real-time data from 
ICU care could make the model dynamic and could, 
for example, help to provide hourly predictions. 
Additionally, this type of prediction does not require 
new data collection because it is based on data from an 
existing high-quality, population-wide registry. Thus, 
this model overcomes the burden of data harmonisation 
and quality control to some extent.17 Practically, mortality 
predictions could be made before potential ICU 
admissions and available immediately, by contrast with 
the scores used in ICUs at present.

Clinical intervention trials do not use the methods 
that we used in this study, which allowed for initial 
stratification based on a more accurate understanding of 
disease history. Patterns in disease history data could 
probably be used effectively in trial design to detect a 
difference between groups and to avoid use of non-
comparable subgroups.32 Furthermore, the effect of 
previous disease history—both diagnosis and the 

temporal order of diagnoses—on patient outcomes could 
reflect a transition of physiological systems that pre
disposes individuals not only to certain diagnoses but 
also to certain outcomes. This could explain why some 
survivors of sepsis return to their baseline performance 
status whereas others progressively decline (a decline not 
predicted by hospital course).33–35

MCC AUROC Positive predictive 
value

In-hospital mortality

Disease history before admission 0·326 0·732 0·562

Disease history at admission 0·330 0·724 0·563

Aggregated history* 0·391 (0·341) 0·792 (0·733) 0·575 (0·534)

SAPS II 0·347 0·742 0·556

APACHE II 0·300 0·720 0·493

30-day mortality

Disease history before admission 0·243 0·688 0·446

Disease history at admission 0·279 0·700 0·422

Aggregated history* 0·368 (0·341) 0·787 (0·737) 0·481 (0·492)

SAPS II 0·349 0·752 0·477

APACHE II 0·287 0·730 0·409

90-day mortality

Disease history before admission 0·326 0·731 0·550

Disease history at admission 0·357 0·736 0·569

Aggregated history* 0·410 (0·382) 0·787 (0·746) 0·589 (0·576)

SAPS II 0·325 0·735 0·565

APACHE II 0·285 0·715 0·507

Values in parentheses relate to the additional, external validation set. MCC=Matthews correlation coefficient. 
AUROC=area under the receiver operating characteristics curve. SAPS II=Simplified Acute Physiology Score II. 
APACHE II=Acute Physiologic Assessment and Chronic Health Evaluation II. *Best model for prediction of in-hospital, 
30-day, and 90-day mortality.

Table 2: Performance comparison of models predicting risk of mortality in the intensive-care unit with 
mortality outcome data

Figure 3: Matthews correlation coefficients (A) and AUROC (B) for models with input data from different timepoints
90-day mortality was the outcome measure for this figure. The history before admission model was trained on age, sex, and 10-year disease history before ICU 
admission. The history at admission model also included transfer category (ie, medical, scheduled surgery, or unscheduled surgery), length of stay before ICU admission, 
and hospital code. The aggregated history model included an aggregated dataset with both long-term disease history (ie, the data used in the history at admission 
model) and data for the first 24 h of ICU admission (ie, features included in SAPS II and APACHE II combined). In these three models, disease history was presented as 
an accumulated representation because the cohort was too small for year-wise representation (appendix). In figure 3B, the dotted line represents the AUROC of a 
model with a random guess. AUROC=area under the receiver operating characteristic curve. ICU=intensive-care unit. SAPS II=Simplified Acute Physiology Score II. 
APACHE II=Acute Physiologic Assessment and Chronic Health Evaluation II.
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Numerous studies have shown the rapid changes that 
occur in clinical practice when physicians are offered tools 
that enable data-guided decision making.36 However, a 
clinical trial is required to fully uncover the value of 
mortality prediction as a decision-support tool in ICUs. We 

specifically used neural networks because we wanted to 
study the interaction of health-related events from different 
timescales. We compared the performance of our 
aggregated history model with other ICU mortality 
prediction models. Yet, as highlighted by Johnson and 
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Figure 4: The ten most important variables in the aggregated history model (A), and effect on the aggregated history model of interaction between age and 
history of diagnoses related to reproduction (B), and interaction between length of stay before ICU admission and history of haematological malignancy (C)
In (A), each patient is represented by a dot in the distribution for each variable. For binary variables, the interaction importance is corrected according to the number 
of patients in whom the variable is present. In (B) the diagnoses related to reproduction are those covered by block Z30–39 of the 10th revision of the International 
Classification of Diseases. In (C), length of stay refers to the duration of the hospital stay before ICU admission. ICU=intensive-care unit.
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colleagues,23 comparison of studies is difficult because of 
variation in outcome measures, inclusion criteria, feature 
availability, and time from data collection to mortality 
prediction. Additionally, AUROC was the only performance 
metric reported consistently across studies, and this metric 
does not always adequately reflect model performance for 
data with unbalanced classes.37 We found that studies with 
higher class imbalance (ie, few non-survivors compared 
with survivors) had better AUROC results but worse 
Matthews correlation coefficients and positive predictive 
values than studies with lower class imbalance. That is, 
high AUROC results can be at the expense of more false 
positive results, which are penalised more heavily in the 
calculation of the Matthews correlation coefficient and 
positive predictive value. Class imbalance was accounted 
for during training of our model, because there is clinical 
demand for accurate prediction, especially among non-
survivors (ie, the minority class). Minimisation of the 
number of false positive predictions—ie, survivors 
predicted not to survive—was imperative because such 
predictions can have fatal consequences if, for example, 
treatment is stopped on the basis of prediction of a high 
risk of mortality. Even though our model was validated 
against external, retrospective data, validation in a 
prospective study is also important.

Neural networks can predict mortality in patients in 
the ICU as well as or better than other machine learning 
techniques.29,38,39 However, interpretation of the feature 
interaction effects modelled here has not been previously 
reported. The advantage of the simple approach that we 
used was higher transparency and much faster 
computational time. Our study shows that more realistic 
interpretations of the risk of death can be achieved with 
neural network models than by studying the additive 
effects of disease history and ICU measures. Binary 
variables make a constant contribution to predictions in 
linear models (eg, SAPS II, APACHE II), but in the 
neural network their effect varies because of interactions 

with other features. Because binary features were mostly 
absent from patients in the EPR cohort, continuous 
features dominate the list of features whose effect is 
strongest on mortality across all patients. Explainable 
neural networks are also gaining popularity in the context 
of deep learning.22,40 We believe that explainable models 
are a key to the transformation of advanced models into 
actionable, transparent, and trustworthy clinical tools.
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